Big data, digital media and society: challenges for communication research

Main Article Content

Roberto Alejandro López-Novelo, Dr.
https://orcid.org/0000-0003-0978-9784

Abstract

Currently, communication research faces a level of complexity never seen before for the discipline, this is due, among other phenomena, to the presence of the Internet and a series of digital environments through which users generate millions of data on topics political, social, economic, cultural, educational, advertising, marketing, etc., in various formats that are available to be analyzed and used by researchers. It is in principle to visualize the Internet as a social space in which people, institutions, organizations and even computer systems generate and carry data; and, to know the new and innovative research methods that currently exist to carry out the formal analysis of data. One of the most widely used methods today is Big Data, which allows communication researchers to carry out innovative research.

Downloads

Download data is not yet available.

PLUMX Metrics

Article Details

How to Cite
López-Novelo, R. A. (2021). Big data, digital media and society: challenges for communication research. Sintaxis, 111–123. https://doi.org/10.36105/stx.2021edesp50aniv.07
Section
Artículos
Author Biography

Roberto Alejandro López-Novelo, Dr., Universidad Anáhuac México

Coordinador del área académica de investigación de la Facultad Comunicación de la Universidad Anáhuac México. Doctor en Ciencias Políticas y Sociales con Orientación en Comunicación por la Universidad Nacional Autónoma de México (UNAM), Maestro en Comunicación (UNAM) y Licenciado en Ciencias de la Comunicación (UNAM). Estancia posdoctoral en Big Data y Comunicación Política en el Observatorio de los Contenidos Audiovisuales (OCA), Universidad de Salamanca, España.

References

Arcila, C., Ortega, F., Jiménez, J., y Trullenque, S. (2017). Análisis supervisado de sentimientos políticos en español: Clasificación en tiempo real de tweets basado en aprendizaje automático. El Profesional de la Información, 26(5). https://doi.org/10.3145/epi.2017.sep.18
Arcila, C., Barbosa, E., y Cabezuelo, F. (2016). Técnicas Big Data: Análisis de textos a gran escala para la investigación científica y periodística. El Profesional de la Información, 25(4).
Baviera, T. (2017). Técnicas para el análisis de sentimiento en Twitter: Aprendizaje automático supervisado y sentistrength. Digitos. Revista de Comunicación Digital, 33-50. http://dx.doi.org/10.7203/rd.v1i3.74
Blakiwal, A., Alora, P., Madhapan, S., y Varma, V. (2012). Mining sentiments from Tweets. Proceedings of the 3er Workshop on computational Approaches to subjectivity and sentiment analysis, pp. 11-18. https://www.aclweb.org/anthology/W12-3704.pdf
Boyd, D., y Crawford, K. (2012). Critical questions for Big data. Information, Communication and Society, 15(5), 662-679. https://doi.org/10.1080/1369118X.2012.678878
Bustamante, A., Nicoletta, B., Guillen, A., y Thais, S. (2017). Un acercamiento mal Big Data y su utilización en Comunicación. Mediaciones Sociales. Ediciones Complutense. https://doi.org/10.5209/MESO.58112
Camargo, J., Camargo, F., y Joynes, L. (2015). Conociendo Big Data. Revista de la Facultad de Ingeniería, 24(38), 63-77.
Campos, E. (2017). Twitter y la Comunicación Política. El Profesional de la Información, 26(5), 785-793. https://doi.org/10.3145/epi.2017.sep.01
Castells, M. (2010). Comunicación y Poder. Alianza Editorial.
Cobo, C., y Kuklinski, H. (2007). Planeta Web 2.0. Inteligencia colectiva o Medios fast food. FLACSO.
Dattu, B., y Gore, D. (2015). A survey on sentiment analysis on Twitter Data using different techniques.
International Journal of Computer Science and Information Technologies, 6, 5358-5362.
Gómez, E. (2007). Las metáforas de Internet. UOC.
Gómez, E., Jaimes, R., Hidalgo, O. y Lujan, S. (2018). Influencia de redes sociales en el análisis de sentimiento aplicado a la situación política de Ecuador. Enfoque UTE, 9(1), 67-78.
https://doi.org/10.29019/enfoqueute.v9.n1.235
González, G. (2016). Internet, comunicación y Sociedad red. Algoritmos para un periodismo multiconectado
[Tesis doctoral]. Universidad Carlos III de Madrid.
Hutto, C., y Gilbert, E. (2014). vader: Anparsimonius Ruled-based Model for Sentiment Analysis of Social Media Text. Association for the Advancement of Artificial Intelligence, pp. 216-225.
https://ojs.aaai.org/index.php/IWCSM/article/view/14550
Kelleher, J., Mac Namee, B., y D’arcy, O. (2015). Machine learning for predictive data analytics. MIT.
López-Cantos, F. (2015). La investigación en comunicación con metodología big data. Revista Latina
de Comunicación Social, 70, 878-890.
Özturk, N., y Serkan, A. (2018). Sentiment analysis on Twitter: A text mining approach to the Syrian refugee crisis. Telematics and Informatics, 35, 136-147. https://doi.org/10.1016/j.tele.2017.10.006
Piotet, D. y Pisani, F. (2009). La alquimia de las multitudes. Cómo la web está cambiando el mundo. Paidós.
Preethi, P., Uma, V., y Kumar, A. (2015). Temporal sentiment analysis and causal rules extraction from Tweets for event prediction. Procedia computer science, 48, 84-89. https://doi.org/10.1016/j.procs.2015.04.154
Schroeck, M., Shockley, R., Smart, J., Romero, N., y Turano, P. (2012). Analytics: El uso de big data en el mundo real. Oxford University.
Sitaram, A., y Huberman, B. (2010). Predicting de future with social media. International Conference on Web Intelligent Agent Technology. https://doi.org/10.1109/WI-IAT.2010.63
Suárez, S., y Guerrero, F. (2016). La conversación sobre Big Data en Twitter. Comunicació: Revista de recerca I d´Analisi, Societat nCatalana de Comunicació, 33, 113-131. https://doi.org/10.2436/20.3008.01.151
Wang, H., Can, D., Kazemzadeh, A., Bak, F., y Narayanan, S. (2012). A system for real time Twitter sentiment analysis of 2012 U.S. Presidential Election Cycle. 50th Annual Meeting of the Association for Computational Linguistics, p. 115-120. https://www.aclweb.org/anthology/P12-3020.pdf
Vinodhini, G., y Chandrasekaran, R. (2012). Sentiment Analysis and opinion mining: A survey. International
Journal of Advanced Research in Computer Science and Software Engineering, 2, 282-292.