Can exercise be used as a protective agent against disease severity in COVID-19 and as treatment during subsequent rehabilitation?
DOI:
https://doi.org/10.36105/psrua.2021v1n1.06Keywords:
COVID-19, severidad, ejercicio, hipertensión, diabetes, edad, rehabilitación, terapia físicaAbstract
In a matter of months, COVID-19 has spread worldwide, and it has affected not only human lives but also the socioeconomic structure. Disease severity increases with the presence of other factors such as age, diabetes, and hypertension. Exercise has been shown to control blood pressure and blood sugar level; it enhances the immune system and age-related physiological changes. Given its ability to control all of these factors, exercise can be used as a protective agent against disease severity in COVID-19 and as treatment during subsequent rehabilitation.
Downloads
PLUMX metrics
References
2. Machhi J, Herskovitz J, Senan AM, Dutta D, Nath B, Oleynikov MD, et al. The Natural History, Pathobiology, and Clinical Manifestations of SARS-CoV-2 Infections. J Neuroimmune Pharmacol 2020;15, 359–386. https://doi.org/10.1007/s11481-020-09944-5
3. Guo W, Li M, Dong Y, Zhou H, Zhang Z, Tian C, et al. Diabetes is a risk factor for the progression and prognosis of COVID-19. Diabetes Metab Res Rev. 2020; e3319
https://doi.org/10.1002/dmrr.3319
4. Baradaran A, Ebrahimzadeh MH, Baradaran A, Amir ;, Kachooei R, Kachooei AR. SYSTEMATIC REVIEW Prevalence of Comorbidities in COVID-19 Patients: A Systematic Review and Meta-Analysis. Arch Bone Jt Surg. 2020;8:247–55. https://doi.org/10.1016/j.ijid.2020.03.017
5. Leung C. Risk factors for predicting mortality in elderly patients with COVID-19: A review of clinical data in China. 2020;188:111255
https://doi.org/10.1016/j.mad.2020.111255
6. Oviedo-Trespalacios OI, Cortes-Ramirez JI. A brief-review of the risk factors for covid-19 severity. Rev. Saude Publica. 2020;54.60. http://doi.org/10.11606/s1518-8787.2020054002481
7. Güner R, Hasanoğlu İ, Aktaş F. Covid-19: Prevention and control measures in community. Journal of Medical Sciences. 2020;50:571-577. https://doi.org/10.3906/sag-2004-146
8. Nicola M, Alsafi Z, Sohrabi C, Kerwan A, Al-Jabir A, Iosifidis C, et al. The socio-economic implications of the coronavirus pandemic (COVID-19): A review. International Journal of Surgery. 78:185-193 https://doi.org/10.1016/j.ijsu.2020.04.018
9. Kelley GA, Kelley KS. Exercise and sleep: a systematic review of previous meta-analyses. J Evid Based Med. 2017;10(1):26–36. https://doi.org/10.1111/jebm.12236
10. Stubbs B, Vancampfort D, Rosenbaum S, Firth J, Cosco T, Veronese N, et al. An examination of the anxiolytic effects of exercise for people with anxiety and stress-related disorders: A meta-analysi.s Psychiatry Research. 2020;249:102–108. https://doi.org/10.1016/j.psychres.2016.12.020
11. Zhao M, Veeranki SP, Magnussen CG, Xi B. Recommended physical activity and all cause and cause specific mortality in US adults: Prospective cohort study. BMJ. 2020 Jul 1;370(1):2031.
http://dx.doi.org/10.1136/bmj.m2031
12. Benefits of Physical Activity | Physical Activity | CDC. https://www.cdc.gov/physicalactivity/basics/pa-health/index.htm
13. Dasso NA. How is exercise different from physical activity? A concept analysis. Nurs Forum. 2019 Jan 1;54(1):45–52. http://doi.wiley.com/10.1111/nuf.12296
14. Zbinden-Foncea H, Francaux M, Deldicque L, Hawley JA. Does High Cardiorespiratory Fitness Confer Some Protection Against Proinflammatory Responses After Infection by SARS-CoV-2? Obesity. 2020;28(8):1378–81. https://doi.org/10.1002/oby.22849
15. Singh AK, Gupta R, Ghosh A, Misra A. Diabetes in COVID-19: Prevalence, pathophysiology, prognosis and practical considerations. Diabetes Metab Syndr Clin Res Rev. 2020 Jul 1;14(4):303–10.
https://doi.org/10.1016/j.dsx.2020.04.004
16. Li X, Xu S, Yu M, Wang K, Tao Y, Zhou Y, et al. Risk factors for severity and mortality in adult COVID-19 inpatients in Wuhan. J Allergy Clin Immunol. 2020 Jul 1;146(1):110–8.
https://doi.org/10.1016/j.jaci.2020.04.006
17. Kreutz R, Algharably EAEH, Azizi M, Dobrowolski P, Guzik T, Januszewicz A, et al. Hypertension, the renin-angiotensin system, and the risk of lower respiratory tract infections and lung injury: Implications for covid-19.Cardiovascular Research.; 2020.116(10):1688–99.
https://doi.org/10.1093/cvr/cvaa097
18. Ran J, Song Y, Zhuang Z, Han L, Zhao S, Cao P, et al. Blood pressure control and adverse outcomes of COVID-19 infection in patients with concomitant hypertension in Wuhan, China. Hypertens Res. 2020;43(11):1267–76. http://dx.doi.org/10.1038/s41440-020-00541-w
19. Chen R, Yang J, Gao X, Ding X, Yang Y, Shen Y, et al. Influence of blood pressure control and application of renin‐angiotensin‐aldosterone system inhibitors on the outcomes in COVID‐19 patients with hypertension. J Clin Hypertens. 2020 Oct 2;22(11):1974-1983.
https://doi.org/10.1111/jch.14038
20. Chen CY, Bonham AC. Postexercise hypotension: Central mechanisms. Exerc Sport Sci Rev. 2010 Jul;38(3):122–7. https://doi.org/10.1097/JES.0b013e3181e372b5
21. Do Socorro Brasileiro-Santos M, Da Cruz Santos A. Neural mechanisms and post-exercise hypotension: The importance of experimental studies.Motriz: Revista de Educacao Fisica.2017:23(1): e101622.
https://doi.org/10.1590/s1980-6574201700si0006
22. Macdonald JR. Potential causes, mechanisms, and implications of post exercise hypotension. J Hum Hypertens. 2002; 16(1): 225–36. https://doi.org/10.1038/sj.jhh.1001377
23. Miki K, Yoshimoto M. Exercise-induced modulation of baroreflex control of sympathetic nerve activity. Frontiers in Neuroscience.2018; 12(1):493. https://doi.org/10.3389/fnins.2018.00493
24. Oliveira R, Barker AR, Debras F, O’Doherty A, Williams CA. Mechanisms of blood pressure control following acute exercise in adolescents: Effects of exercise intensity on haemodynamics and baroreflex sensitivity. Exp Physiol. 2018 Aug 1;103(8):1056–66. https://doi.org/10.1113/EP086999
25. Ishikawa-Takata K, Ohta T, Tanaka H. How much exercise is required to reduce blood pressure in essential hypertensives: A dose-response study. Am J Hypertens. 2003 Aug 1;16(8):629–33.
https://doi.org/10.1016/S0895-7061(03)00895-1
26. Dimeo F, Pagonas N, Seibert F, Arndt R, Zidek W, Westhoff TH. Aerobic exercise reduces blood pressure in resistant hypertension. Hypertension. 2012 Sep;60(3):653–8.
https://doi.org/10.1161/HYPERTENSIONAHA.112.197780
27. Brito LC, Peçanha T, Fecchio RY, Rezende RA, Sousa P, Da Silva-Júnior N, et al. Morning versus Evening Aerobic Training Effects on Blood Pressure in Treated Hypertension. Med Sci Sports Exerc. 2019 Apr 1;51(4):653–62. https://doi.org/10.1249/MSS.0000000000001852
28. Maya ÁTD, Assunção MJ, Brito CJ, Vieira E, Rosa TS, Pereira FB, et al. High-intensity interval aerobic exercise induced a longer hypotensive effect when compared to continuous moderate. Sport Sci Health. 2018 Aug 1;14(2):379–85. https://doi.org/10.1007/s11332-018-0444-3
29. Gorostegi-Anduaga I, Corres P, MartinezAguirre-Betolaza A, Pérez-Asenjo J, Aispuru GR, Fryer SM, et al. Effects of different aerobic exercise programmes with nutritional intervention in sedentary adults with overweight/obesity and hypertension: EXERDIET-HTA study. Eur J Prev Cardiol. 2018 Mar 1;25(4):343–53.
https://doi.org/10.1177%2F2047487317749956
30. McGowan CL, Proctor DN, Swaine I, Brook RD, Jackson EA, Levy PD. Isometric Handgrip as an Adjunct for Blood Pressure Control: a Primer for Clinicians. Current Hypertension Reports.2017; 19(1):51 https://doi.org/10.1007/s11906-017-0748-8
31. Van Assche T, Buys R, De Jaeger M, Coeckelberghs E, Cornelissen VA. One single bout of low-intensity isometric handgrip exercise reduces blood pressure in healthy pre- and hypertensive individuals. J Sports Med Phys Fitness. 2017;57(4):469–75.
http://doi.org/10.23736/s0022-4707.16.06239-3
32. Badrov MB, Freeman SR, Zokvic MA, Millar PJ, McGowan CL. Isometric exercise training lowers resting blood pressure and improves local brachial artery flow-mediated dilation equally in men and women. Eur J Appl Physiol. 2016 Jul 1;116(7):1289–96.
https://doi.org/10.1007/s00421-016-3366-2
33. Ash GI, Taylor BA, Thompson PD, MacDonald H V., Lamberti L, Chen MH, et al. The antihypertensive effects of aerobic versus isometric handgrip resistance exercise. J Hypertens. 2017;35(2):291–9. https://doi.org/10.1097/HJH.0000000000001176
34. Pagonas N, Vlatsas S, Bauer F, Seibert FS, Zidek W, Babel N, et al. Aerobic versus isometric handgrip exercise in hypertension: A randomized controlled trial. J Hypertens. 2017 Nov 1;35(11):2199–206. https://doi.org/10.1097/HJH.0000000000001445
35. Muniyappa R, Gubbi S. COVID-19 pandemic, coronaviruses, and diabetes mellitus. Am J Physiol Endocrinol Metab. 2020;318(5):736–41. https://doi.org/10.1152/ajpendo.00124.2020
36. Cuschieri S, Grech S. COVID-19 and diabetes: The why, the what and the how. J Diabetes Complications. 2020;34(9):107637. https://doi.org/10.1016/j.jdiacomp.2020.107637
37. Zhu L, She ZG, Cheng X, Qin JJ, Zhang XJ, Cai J, et al. Association of Blood Glucose Control and Outcomes in Patients with COVID-19 and Pre-existing Type 2 Diabetes. Cell Metab. 2020;31(6):1068-1077. https://doi.org/10.1016/j.cmet.2020.04.021
38. Sylow L, Kleinert M, Richter EA, Jensen TE. Exercise-stimulated glucose uptake-regulation and implications for glycaemic control. Vol. 13, Nature Reviews Endocrinology.2017; 13(1):133–48.
https://doi.org/10.1038/nrendo.2016.162
39. Liu Y, Ye W, Chen Q, Zhang Y, Kuo CH, Korivi M. Resistance exercise intensity is correlated with attenuation of HbA1c and insulin in patients with type 2 diabetes: A systematic review and meta-analysis. International Journal of Environmental Research and Public Health.2019:16(1):140. http://dx.doi.org/10.3390/ijerph16010140
40. Riddell MC, Gallen IW, Smart CE, Taplin CE, Adolfsson P, Lumb AN, et al. Exercise management in type 1 diabetes: a consensus statement. The Lancet Diabetes and Endocrinology.2017; 5(5):377–90.
https://doi.org/10.1016/S2213-8587(17)30014-1
41. Reddy R, Wittenberg A, Castle JR, El Youssef J, Winters-Stone K, Gillingham M, et al. Effect of Aerobic and Resistance Exercise on Glycemic Control in Adults With Type 1 Diabetes. Can J Diabetes. 2019 Aug 1;43(6):406-414. https://doi.org/10.1016/j.jcjd.2018.08.193
42. Mitranun W, Deerochanawong C, Tanaka H, Suksom D. Continuous vs interval training on glycemic control and macro- and microvascular reactivity in type 2 diabetic patients. Scand J Med Sci Sport. 2014;24(2): e69-e76. https://doi.org/10.1111/sms.12112
43. Karstoft K, Winding K, Knudsen SH, Nielsen JS, Thomsen C, Pedersen BK, et al. The effects of free-living interval-walking training on glycemic control, body composition, and physical fitness in type 2 diabetic patients: A randomized, controlled trial. Diabetes Care. 2013 Feb;36(2):228–36. https://doi.org/10.2337/dc12-0658
44. RezkAllah SS, Takla MK. Effects of different dosages of interval training on glycemic control in people with prediabetes: A randomized controlled trial. Diabetes Spectr. 2019 May 1;32(2):125–31.
https://doi.org/10.2337/ds18-0024
45. Tesauro M, Mauriello A, Rovella V, Annicchiarico-Petruzzelli M, Cardillo C, Melino G, et al. Arterial ageing: from endothelial dysfunction to vascular calcification. Journal of Internal Medicine.2017;281(5):471–82. https://doi.org/10.1111/joim.12605
46. Frontera WR. Physiologic Changes of the Musculoskeletal System with Aging: A Brief Review. Physical Medicine and Rehabilitation Clinics of North America.2017;28(4):705–11.
https://doi.org/10.1016/j.pmr.2017.06.004
47. Skloot GS. The Effects of Aging on Lung Structure and Function. Clinics in Geriatric Medicine. 2017;33(4):447–57.
https://doi.org/10.1016/j.cger.2017.06.001
48. Sadighi Akha AA. Aging and the immune system: An overview. Journal of Immunological Methods.2018; 463(1): 21–6. https://doi.org/10.1016/j.jim.2018.08.005
49. Wilson D, Jackson T, Sapey E, Lord JM. Frailty and sarcopenia: The potential role of an aged immune system. Ageing Research Reviews. 2017;36(1):1–10.
https://doi.org/10.1016/j.arr.2017.01.006
50. Li G, Thabane L, Papaioannou A, Ioannidis G, Levine MAH, Adachi JD. An overview of osteoporosis and frailty in the elderly. BMC Musculoskeletal Disorders.2017;18(1):46
https://doi.org/10.1186/s12891-017-1403-x
51. Hoogendijk EO, Afilalo J, Ensrud KE, Kowal P, Onder G, Fried LP. Frailty: implications for clinical practice and public health. The Lancet. 2019; 394(10206):1365–75.
https://doi.org/10.1016/S0140-6736(19)31786-6
52. Cesari M, Calvani R, Marzetti E. Frailty in Older Persons. Vol. 33, Clinics in Geriatric Medicine. 2017; 33(3):293–303.
https://doi.org/10.1016/j.cger.2017.02.002
53. Moccia F, Gerbino A, Lionetti V, Miragoli M, Munaron LM, Pagliaro P, et al. COVID-19-associated cardiovascular morbidity in older adults: a position paper from the Italian Society of Cardiovascular Researches. GeroScience.2020;42(1):1021-1049. https://doi.org/10.1007/s11357-020-00198-w
54. Nikolich-Zugich J, Knox KS, Tafich Rios C, Natt B, Bhattacharya D, Fain MJ. SARS-CoV-2 and COVID-19 in older adults: what we may expect regarding pathogenesis, immune responses, and outcomes. GeroScience.2020;42(1):505-514. https://doi.org/10.1007/s11357-020-00186-0
55. Roman MA, Rossiter HB, Casaburi R. Exercise, ageing and the lung. Eur Respir J.2016; 48(5):1471–86.
http://dx.doi.org/10.1183/13993003.00347-2016
56. Koch LG, Kemi OJ, Qi N, Leng SX, Bijma P, Gilligan LJ, et al. Intrinsic aerobic capacity sets a divide for aging and longevity. Circ Res. 2011 Oct 28;109(10):1162–72.
https://doi.org/10.1161/CIRCRESAHA.111.253807
57. Vigorito C, Giallauria F. Effects of exercise on cardiovascular performance in the elderly.Front. Physiol.2014; 5(1):51.
https://doi.org/10.3389/fphys.2014.00051
58. Vincent KR, Braith RW, Feldman RA, Kallas HE, Lowenthal DT. Improved cardiorespiratory endurance following 6 months of resistance exercise in elderly men and women. Arch Intern Med. 2002 Mar 25;162(6):673–8. https://doi.org/10.1001/archinte.162.6.673
59. Yoon J-R, Ha G-C, Kang S-J, Ko K-J. Effects of 12-week resistance exercise and interval training on the skeletal muscle area, physical fitness, and mental health in old women. Journal of Exercise Rehabilitation. 2019; 15(6): 839-847. https://doi.org/10.12965/jer.1938644.322
60. Chen HT, Chung YC, Chen YJ, Ho SY, Wu HJ. Effects of Different Types of Exercise on Body Composition, Muscle Strength, and IGF-1 in the Elderly with Sarcopenic Obesity. J Am Geriatr Soc. 2017 Apr 1; 65(4):827–32. http://doi.wiley.com/10.1111/jgs.14722
61. Kim YA, Lee Y, Lee JH, Seo JH. Effects of physical activity on bone mineral density in older adults: Korea National Health and Nutrition Examination Survey, 2008–2011. Arch Osteoporos. 2019 Dec 1;14(1):1–10.
https://doi.org/10.1007/s11657-019-0655-5
62. Beavers KM, Beavers DP, Martin SB, Marsh AP, Lyles MF, Lenchik L, et al. Change in Bone Mineral Density during Weight Loss with Resistance Versus Aerobic Exercise Training in Older Adults. Journals Gerontol - Ser A Biol Sci Med Sci. 2017 Nov 1;72(11):1582–5.
https://doi.org/10.1093/gerona/glx048
63. Roma MFB, Busse AL, Betoni RA, Melo AC de, Kong J, Santarem JM, et al. Effects of resistance training and aerobic exercise in elderly people concerning physical fitness and ability: a prospective clinical trial. Einstein.2013;11(2):153–7.
http://dx.doi.org/10.1590/S1679-45082013000200003
64. Meng N-H, Li C-I, Liu C-S, Lin C-H, Chang C-K, Chang H-W, et al. Effects of concurrent aerobic and resistance exercise in frail and pre-frail older adults A randomized trial of supervised versus home-based programs. Medicine.2020 July 17;99(29):e21187 http://dx.doi.org/10.1097/MD.0000000000021187
65. Minuzzi LG, Rama L, Chupel MU, Rosado F, Dos Santos JV, Simpson R, et al. Effects of lifelong training on senescence and mobilization of T lymphocytes in response to acute exercise. Exerc Immunol Rev. 2018;24(1):72–84.
66. Abd El-Kader SM, Al-Shreef FM. Inflammatory cytokines and immune system modulation by aerobic versus resisted exercise training for elderly. Afr Health Sci. 2018 Mar 1;18(1):120–31.
https://doi.org/10.4314/ahs.v18i1.16
67. Sellami M, Gasmi M, Denham J, Hayes LD, Stratton D, Padulo J, et al. Effects of acute and chronic exercise on immunological parameters in the elderly aged: Can physical activity counteract the effects of aging? Vol. 9, Frontiers in Immunology. 2018;9(1):2187
https://doi.org/10.3389/fimmu.2018.02187
68. Polastri M, Oldani S, Pisani L, Nava S. Elastic Band Exercises for Patients with Intensive Care Unit-Acquired Weakness: A Case Report. Tanaffos. 2018;17(2):132–7.
69. Medrinal C, Combret Y, Prieur G, Robledo Quesada A, Bonnevie T, Gravier FE, et al. Comparison of exercise intensity during four early rehabilitation techniques in sedated and ventilated patients in ICU: A randomised cross-over trial. Crit Care. 2018 Apr 27;22(1):110
https://doi.org/10.1186/s13054-018-2030-0
70. Bolton CE, Bevan-Smith EF, Blakey JD, Crowe P, Elkin SL, Garrod R, et al. British Thoracic Society guideline on pulmonary rehabilitation in adults.Thorax. 2013;68(1):ii1-ii30. http://dx.doi.org/10.1136/thoraxjnl-2013-203808
71. Santos C, Rodrigues F, Santos J, Morais L, Bárbara C. Pulmonary rehabilitation in COPD: Effect of 2 aerobic exercise intensities on subject-centered outcomes—A randomized controlled trial. Respir Care. 2015 Nov 1;60(11):1603–9. https://doi.org/10.4187/respcare.03663
72. Tsai LLY, McNamara RJ, Moddel C, Alison JA, McKenzie DK, McKeough ZJ. Home-based telerehabilitation via real-time videoconferencing improves endurance exercise capacity in patients with COPD: The randomized controlled TeleR Study. Respirology. 2017 May ;22(4):699–707. https://doi.org/10.1111/resp.12966
73. Bernocchi P, Vitacca M, La Rovere MT, Volterrani M, Galli T, Baratti D, et al. Home-based telerehabilitation in older patients with chronic obstructive pulmonary disease and heart failure: A randomised controlled trial. Age Ageing.2018 Jan 1 ;47(1):82–8.
https://doi.org/10.1093/ageing/afx146
74. Chen YW, Wang CY, Lai YH, Liao YC, Wen YK, Chang ST, et al. Home-based cardiac rehabilitation improves quality of life, aerobic capacity, and readmission rates in patients with chronic heart failure. Medicine.2018;97(4):e9629.
http://dx.doi.org/10.1097/MD.0000000000009629
75. Jiménez-Pavón D, Carbonell-Baeza A, Lavie CJ. Physical exercise as therapy to fight against the mental and physical consequences of COVID-19 quarantine: Special focus in older people. Progress in Cardiovascular Diseases. 2020;63(3): 386–8.
https://doi.org/10.1016/j.pcad.2020.03.009
76. Morrey LB, Roberts WO, Wichser L. Exercise-related Mental Health Problems and Solutions during the COVID-19 Pandemic. Curr Sports Med Rep. 2020 Jun; 19(6): 194–195.
https://dx.doi.org/10.1249%2FJSR.0000000000000725
77. Gordon BR, McDowell CP, Hallgren M, Meyer JD, Lyons M, Herring MP. Association of efficacy of resistance exercise training with depressive symptoms meta-analysis and meta-regression: Analysis of randomized clinical trials. JAMA Psychiatry. 2018 Jun 1;75(6):566–76. https://doi.org/10.1001/jamapsychiatry.2018.0572
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Felix León-Avila, Galit Wohlmuth-Cohen, Ana Cristina Suárez-Espinosa, Alejandra de la Cruz-Romano, Jimena Figueroa-Valero
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
All the intellectual content found in this publication is licensed to the consumer public under the figure of Creative Commons©, unless the author of said content has agreed otherwise or limited said faculty to "Proceedings of Scientific Research Universidad Anáhuac. Multidisciplinary Journal of Healthcare©" or "Universidad Anáhuac Mexico©" in writing and expressly.
Proceedings of Scientific Research Universidad Anáhuac. Multidisciplinary Journal of Healthcare is distributed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The author retains the economic rights without restrictions and guarantees the journal the right to be the first publication of the work. The author is free to publish his article in any other medium, such as an institutional repository.